A homogenization of GNSS tropospheric data with autoregressive process

Anna Klos¹, F. Norman Teferle², Olivier Bock³, Eric Pottiaux⁴, Roeland Van Malderen⁵, Janusz Bogusz¹

¹) Military University of Technology, Faculty of Civil Engineering and Geodesy, Warsaw, Poland
²) University of Luxembourg, Geophysics Laboratory, FSTC, Luxembourg
³) IGN LAREG, University Paris Diderot, Sorbonne Paris, France
⁴) Royal Observatory of Belgium, Brussels, Belgium
⁵) Royal Meteorological Institute of Belgium, Brussels, Belgium

2. Offsets in GNSS arise from:
 1. Hardware change,
 2. Earthquake,
 3. Unknown reason.

These can be also seen in IWV series retrieved from GNSS.

Hardware changes are reported in log-files, however some may be unreported.

Relative homogenisation methods are most effective to detect offsets in time series.

Here we use IWV differences (GPS - ERA-Interim reanalysis).
3. What is the plan?

1. Analyse the common data set provided for homogenisation sub-WG3 working group,

2. Use the amplitudes of seasonal changes, values of trend and character of stochastic part to create a benchmark (simulation of a synthetic dataset): GPS, ERAI and GPS-ERAI

3. Simulate offsets,

4. Perform blind tests to detect simulated changes manually and with different statistical approaches,

5. Decide on the optimum method to report real offsets (not ones related to autoregressive behaviour of data),

6. Use this method to IWV retrieved from GNSS data.
A common dataset provided for homogenisation group (sub-WG3 group).

Homogenisation of common dataset:

1. 600 offsets reported in log-files of GNSS stations (common data set),
2. 41 offsets reported manually in differences of IWV (ERAI-GPS) (a),
3. Few stations included in a special class: cases where visual detection of offsets is not reliable (GOPE: Czech Republic, KOUR: French Guiana, LONG: USA and MCM4: Antarctica) (b).
A homogenized common data set provided for homogenisation group (sub-WG3 group):
1. We fitted a least-squares model as:

\[
ZTD(t_i) = a + b \cdot (t_i - t_0) + \\
+ c \cdot \sin(2\pi \cdot (t_i - t_0)) + d \cdot \cos(2\pi \cdot (t_i - t_0)) + \epsilon_{ZTD_i}
\]

and removed trend and annual curve to examine on stochastic part character \(\epsilon_{ZTD} \).
A homogenized common data set provided for homogenisation group (sub-WG3 group):

2. We analysed on a character of stochastic part:

3. Autoregressive of first order plus white noise (AR(1)+WN) chosen as a most appropriate for daily IWV data, basing on AIC criterion plus time of computation:

\[\varepsilon_{ZTD_t} = \varphi_1 \varepsilon_{ZTD_{t-1}} + \alpha_t \]

\[\varepsilon_{ZTD_t} = \varphi_1 \varepsilon_{ZTD_{t-1}} + \varphi_2 \varepsilon_{ZTD_{t-2}} + \varphi_3 \varepsilon_{ZTD_{t-3}} + \varphi_4 \varepsilon_{ZTD_{t-4}} + \alpha_t \]
A homogenized common data set provided for homogenisation group (sub-WG3 group):

4. We examined on amplitudes of seasonal changes, values of trend and AR(1)+WN with Maximum Likelihood Estimation (MLE) in Hector Software (Bos et al., 2013).
A homogenized common data set provided for homogenisation group (sub-WG3 group):
4. We examined on amplitudes of seasonal changes, values of trend and AR(1)+WN with Maximum Likelihood Estimation (MLE) in Hector Software (Bos et al., 2013).
A homogenized common data set provided for homogenisation group (sub-WG3 group):

4. We examined on amplitudes of seasonal changes, values of trend and AR(1)+WN with Maximum Likelihood Estimation (MLE) in Hector Software (Bos et al., 2013).
A homogenized common data set provided for homogenisation group (sub-WG3 group):

4. We examined on amplitudes of seasonal changes, values of trend and AR(1)+WN with Maximum Likelihood Estimation (MLE) in Hector Software (Bos et al., 2013).
A homogenized common data set provided for homogenisation group (sub-WG3 group):

4. We examined on amplitudes of seasonal changes, values of trend and AR(1)+WN with Maximum Likelihood Estimation (MLE) in Hector Software (Bos et al., 2013).
A homogenized common data set provided for homogenisation group (sub-WG3 group):

4. We examined on amplitudes of seasonal changes, values of trend and AR(1)+WN with Maximum Likelihood Estimation (MLE) in Hector Software (Bos et al., 2013).

ERA-Interim
Median 0.65
A homogenized common data set provided for homogenisation group (sub-WG3 group):

4. We examined on amplitudes of seasonal changes, values of trend and AR(1)+WN with Maximum Likelihood Estimation (MLE) in Hector Software (Bos et al., 2013).
A homogenized common data set provided for homogenisation group (sub-WG3 group):

4. We examined on amplitudes of seasonal changes, values of trend and AR(1)+WN with Maximum Likelihood Estimation (MLE) in Hector Software (Bos et al., 2013).
A homogenized common data set provided for homogenisation group (sub-WG3 group):

4. We examined on amplitudes of seasonal changes, values of trend and AR(1)+WN with Maximum Likelihood Estimation (MLE) in Hector Software (Bos et al., 2013).
Synthetic data:

We simulated the synthetic dataset with parameters derived from ERA-Interim, GPS and differences ERAI-GPS.

Synthetic series basing on median parameters of GPS & ERAI:

AR(1): fraction = 1.00,

\(\sigma = 3.50 \text{ kg/m}^2 \),

AR(1) = 0.60±0.03.

Can anyone see more offsets?
Synthetic data:

We simulated the synthetic dataset with parameters derived from ERA-Interim, GPS and differences ERAI-GPS.

Synthetic series basing on median parameters of GPS & ERAI:

AR(2): fraction = 1.00,

\[\sigma = 3.50 \text{ kg/m}^2 \]

AR(1) = 0.60 ± 0.03,

AR(2) = 0.3 ± 0.03.

Can anyone see more offsets?
Synthetic data:

We simulated the synthetic dataset with parameters derived from ERA-Interim, GPS and differences ERAI-GPS.

Synthetic series basing on median parameters of differences (ERAI-GPS):

- **AR(1):** fraction = 0.71,
- **sigma = 0.81 kg/m\(^2\),**
- **AR(1) = 0.50±0.03.**

Can anyone see more offsets?
Synthetic data:

We simulated the synthetic dataset with parameters derived from ERA-Interim, GPS and differences ERAI-GPS.

Synthetic series basing on median parameters of differences (ERAI-GPS):

AR(2): fraction = 0.71,

sigma = 0.81 kg/m^2,

AR(1) = 0.50±0.03,

AR(2) = 0.30 ±0.02.

Can anyone see more offsets?
Synthetic data:

We simulated the synthetic dataset with parameters derived from ERA-Interim, GPS and differences ERAI-GPS.

Synthetic series basing on

AUCK (New Zealand):

AR(4): fraction = 0.73,

sigma = 3.18 kg/m2,

AR(1) = 0.77±0.03,

AR(2) = 0.17±0.02,

AR(3) = 0.02±0.015,

AR(4) = -0.01±0.00

Can anyone see more offsets?
7. Conclusions and Perspectives:

a) We delivered a homogenized dataset of ERAI, GPS and differences (ERAI-GPS).

b) We derived parameters of a common dataset.

c) We performed a manual homogenisation of synthetic dataset to prove, that we can report offsets due to regime-like behaviour of AR process.

d) Next step: simulate offsets in 1 000 of synthetic series.

e) Future: Test different statistical homogenisation methods

Potential major issue: can offsets be efficiently detected with statistical approaches, being aware of the autoregressive noise in a stochastic part of the IWV data?

f) Use these methods to homogenize IWV GNSS data
THANK YOU FOR ATTENTION

e-mail: anna.klos@wat.edu.pl

ACKNOWLEDGEMENTS:
Maps were drawn in the Generic Mapping Tools (Wessel et al., 2013).

The methodology was partially carried out during a Short Term Scientific Mission (STSM) that Anna Klos attended to at the University of Luxembourg thanks to the ES1206 COST Action.