Evaluation of the atmospheric water vapor content in the regional climate model ALARO-0 using GNSS observations

Julie Berckmans, Roeland Van Malderen, Eric Pottiaux, Rafiq Hamdi

Introduction

Data

Methods

Results

Conclusions

Aim

Evaluation of water vapor in RCM using observations from GNSS

Motivation

Lack of validation by RCMs, new homogenised dataset ready for climate studies

Relevance Quality of RCM for climate projection

Climate model

ALARO

Version 0

- Configuration of the ALADIN model
- Size 149 × 149 grid points
- Horizontal resolution 20 km
- Lambert conformal projection
- Vertical 46 levels
- Radiation scheme ACRANEB
- Lateral boundary conditions ERA-Interim
- Land surface model SURFEX

ALADIN International Team (1997), Gerard et al. (2009), De Troch et al. (2013), Giot et al. (2016), Masson et al. (2003, Masson et al. (2013)

Observations

Stations >10 years of data

Repro 1 - 20 stations - 1996:2011

Repro 2: 100 stations - 1996:2014 Pacione et al. (2016)

IWV calculation

ZTD observations to IWV

$$IWV = \Pi. ZWD = \Pi. (ZTD - ZHD)$$

$$\downarrow \qquad \qquad \downarrow$$

$$\Pi = \frac{10^{6}}{\varrho_{W}R_{v}(\frac{k_{3}}{T_{m}} + k_{2}')}$$

$$ZHD = 0.0022768 \frac{P_{GPS}}{f(\lambda, H_{GPS})}$$

$$f(\lambda, H_{GPS}) = 1 - 0.00266 \cos(2\lambda) - 0.0000028H_{GPS}$$

[Askne and Nordius, 1987] [Hogg et al., 1981] [Saastamoinen, 1972] [Davis et al., 1985] [Elgered et al., 1991]

Simplification for Tm: $T_m = 0.72T_s + 70.2$

[Bevis et al., 1992]

<u>Hypsometric equation</u>: $P_{GPS} = P_{s} e^{\frac{-g\Delta H}{R_{a}T}}$ _(Stull, 1995)

Ts and Ps from ERA-Interim

Model calculation of IWV

- Neirest gridpoint
- Horizontal interpolation
- Pressure station level using barometric formula
- T, Sfpres, H from model
- Standard lapse rate -0.0065K/m
- \blacksquare Vertical levels from lowest to +/- 20 km
- Vertical interpolation

Hagemann et al. (2003)

Model performance

Model performance

20 stations represented by repro1 and repro2

Spatial

ER

А

- Overestimation ERAI \approx Lucas-Picher et al. (2013)
- \blacksquare Larger differences in summer for both ALARO and ERAI \approx Ning et al. (2013)
- Underestimation of regional climate model in summer \approx Ning et al. (2013)
- Standard deviations larger using model than ERAI \approx Ning et al. (2013)
- Improvement by repro2 compared to repro1
- Largest differences ALARO and ERAI in Spain = dry bias
- Latitudinal dependence \approx Pacione et al. (2016)

- Latitudinal dependence
- Diurnal cycle
- Seasonal dependence

