

The use of GPS and reanalysis data for validation of precipitable water vapor in regional climate models over Ethiopia

Bert Van Schaeybroeck^{1,2}, Roeland Van Malderen¹,

Eric Pottiaux³, Abdisa Kawo⁴

¹Royal Meteorological Institute of Belgium, Brussels, Belgium

²Ghent University, Department of Geography, Ghent, Belgium,

³ Royal Observatory of Belgium, Brussels, Belgium

⁴ Space Science and Geospatial Institute, Addis Ababa, Ethiopia.

Koninklijk Meteorologisch Instituut

Institut Royal Météorologique

Köninglische Meteorologische Institut

Royal Meteorological Institute

11/12/2023 AGU23

Context: Water vapor & climate models

- Water vapor is the most important natural greenhouse gas, water vapor affecting water and energy balance and therefore climate change.
- PWV provides upper limit to the potential precipitation which could fall from that column of air. Therefore very relevant for **extreme rainfall**.
- Critical to validate water vapor in models
 used for future projections

Context: Research questions

- Can we use **reanalysis** data over **tropical mountainous** regions?
- How do Regional Climate Models (RCMs) reproduce precipitable water vapor (PWV) over Ethiopia?
- What is the **impact of climate change on PWV** and how does it relate to the changes in **temperature and heavy rainfall**?

Climate of Ethiopia

Ethiopia:

- covers diversity of climate zones tropical (red), dry (yellow), temperate (purple).
- Mountains exceed 4000m in elevation (see panel b)
- Suffers from a lack of long observational datasets

4

Validation of ERA5 vs GPS-derived PWV

PWV over eight Ethiopian global positioning system (GPS) sites for period 2013-2020, and compare with the PWV retrieved from the state-ofthe-art ERA5 reanalysis.

well captured by ERA5

Validation of ERA5 vs GPS-derived PWV

• Correlation of hourly PWV between ERA5 and GNSS-based is 96%-99%.

Seasonal and diurnal cycles are also

- ERA5 slightly underestimates PWV for the majority of the sites.
- Overall root mean square error of 3.4 mm.

Kawo et al. Remote Sens. 2022, 14, 686. doi:10.3390/rs14030686 6

- **Obs: GNSS-derived** PWV observations at 5 stations
- **Reference: ERA5** PWV 1990-2009
- Model: CORDEX (Coordinated Regional Climate Downscaling Experiment) over Africa (AFR), MENA (MNA) and West Asia (WAS) at 0.44° and 0.22° horizontal resolution.

CORDEX Domain Resolution	Regional Climate Model (RCM)
AFR-22	CCLM5-0-15 (v1 CLMcom-KIT)
AFR-44	CCLM4-8-17 (v1 CLMcom)
	RACMO22T (v1 KNMI)
	HadRM3P (v1 MOHC)
	RCA4 (v1 SMHI)
	CRCM5 (v1 UQAM)
MNA-22	RCA4 (v1 SMHI)
MNA-44	RCA4 (v1 SMHI)
WAS-44	HadRM3P (v1 MOHC)
	RCA4 (v2 SMHI)

Annual cycle PWV

Model uncertainty large but on average in line with observations and reference

RCMs strongly correlate with ERA5 in most regions and have model-specific biases unrelated to orography. *Kawo et al. Clim Dyn 61, 5287–5307 (2023).*

PWV evolution during heavy-rainfall event

- PWV anomalies before and after the occurrence of heavy-rainfall events.
- These peaks are highest in the **driest** regions (e.g. Afar).
- CORDEX captures overall spatial patterns but overestimates lowest and underestimates highest PWV anomalies.

Relation PWV with T2M & extreme rainfall

- PWV scales with temperature at CC scaling but scaling higher over the mountains.
- Discrepancy between spatial patterns of extreme rainfall and PWV future changes

- Validation of ERA5 against GPS-based PWV shows ERA5 is reliable climatological reference in tropical mountains
- CORDEX **RCMs reproduce reasonably well the PWV annual cycle** but biases appear in the very dry and in the tropical climate zones. No elevation dependence.
- **RCMs simulate peak in PWV anomalies** at day of heavy-rainfall event but overestimate the timescales of buildup and decline.
- PWV changes align with near-surface temperature changes at a rate of **7.7% per degree local warming**.
- Changes in daily rainfall extremes are lower especially in northwestern Ethiopia potentially caused by an overall (rainfall) drying.

Kawo et al. Clim Dyn 61, 5287–5307 (2023).