

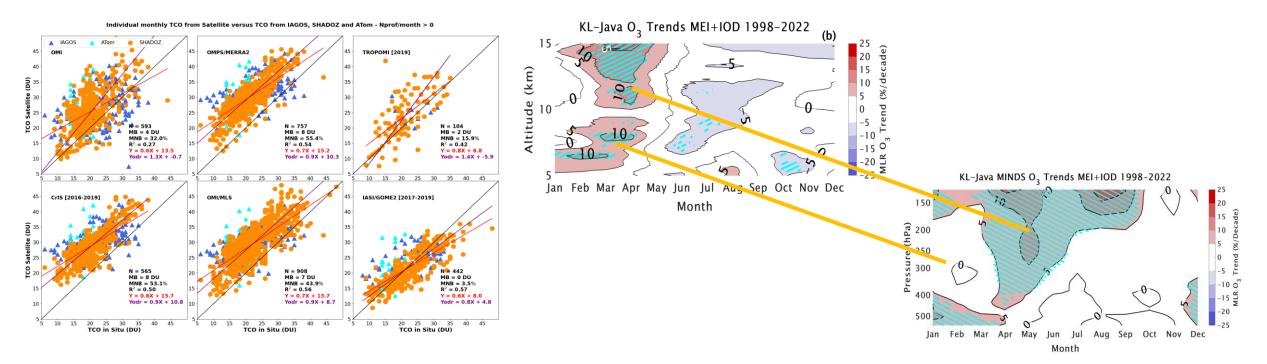
Trends (2000 to 2022) from TOAR II/HEGIFTOM Global Ground-based Tropospheric Measurements: A Reference Dataset for Satellite Products & Models

Anne M. Thompson^{*1,2}, Debra E. Kollonige^{1,3}, Ryan M. Stauffer¹ Roeland Van Malderen⁴, Herman GJ Smit^{5,6}, Bryan J. Johnson⁷, Kai-Lan Chang^{6,8}

 (1) Atmospheric Chemistry & Dynamics Lab, NASA/GSFC, Greenbelt, MD; (2) GESTAR, Univ. of Maryland, Baltimore County, MD; (3) Science Systems & Applications, Inc, Lanham, MD;
(4) RMI, Uccle, Belgium; (5) FZ-Juelich, Germany; (6) CIRES, U. of Colorado, Boulder, CO;
(7) NOAA/Global Monitoring Lab, Boulder, CO; (8) NOAA Chemical Sciences Lab, Boulder, CO

* anne.m.thompson@nasa.gov

SHADOZ=So. Hemisphere Additional Ozonesondes IAGOS = In-service Aircraft for a Global Observing System HEGIFTOM = Harmonization and Evaluation of Ground-based Instruments for Free Tropospheric Ozone Measurements



- WHY Is HEGIFTOM (Harmonization and Evaluation of Ground-based Instruments for Free Tropospheric Ozone Measurements) so important in Ozone (TOAR II) & Climate Assessments?
- HEGIFTOM: WHAT, HOW, WHERE. Data Status.
- Present "Total tropospheric ozone column" (TrOC, surface to 300 hPa) trends
 - Focus on 55 station/instrument time-series from 2000-2022
 - Five instrument types with TrOC measurements included in calculations
 - Compare trends by 2 standard statistical methods (QR, MLR)
 - Free Tropospheric (FT) ozone column trends computed (not shown)
- Summary: Trends to date for 2000-2022 show:
 - All sites within <u>+</u> 3 ppbv/dec → equivalent to <u>+(</u>1-8)%/dec, for TrOC, depending on location, <u>and independent of statistical method</u>
 - HEGIFTOM data = *the* independent reference for satellite, model evaluation

Why Does IGAC/TOAR II Need HEGIFTOM?

- Tropospheric ozone (TCO) satellite products (Keppens, next Talk) struggle to match aircraft, ozonesondes, each other! New tropical comparisons (Gaudel et al., 2024 for TOAR II) illustrate noise, varying biases, correlation, r² 0.3-0.6 (Left)
- Typical CCM puts positive FT O₃ trend, greatest radiative forcing region, in wrong months. BL O₃ trend too low. (Right, update of Stauffer et al., 2019)

WHAT & HOW: HEGIFTOM Data to the Rescue!

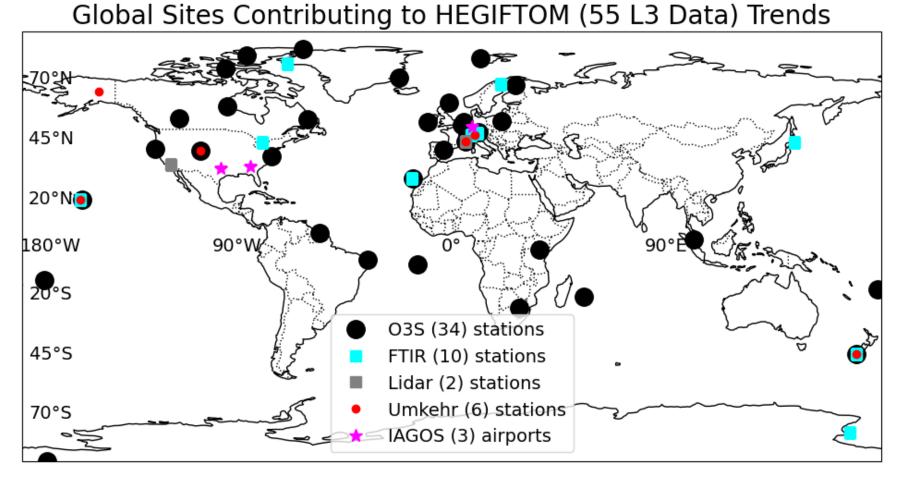
HEGIFTOM: IGAC/TOAR II Activity, Co-Leads: R. Van Malderen & H. G. J. Smit

Alternative to still-evolving satellite TrOC (tropospheric ozone column) products:

- Ozone from 5 ground-based instrument types, most from NDACC & related networks: in-service aircraft [IAGOS], ozonesondes, FTIR, Brewer/Dobson Umkehr, Lidar (Photos, Right)
- All instrument types in HEGIFTOM database. Reprocessed data based on rigorous protocols and absolute standards, thus ensuring harmonized time-series with minimal artifacts. Contributing networks
- Each measurement is delivered with <u>uncertainty</u> and a <u>quality flag</u>

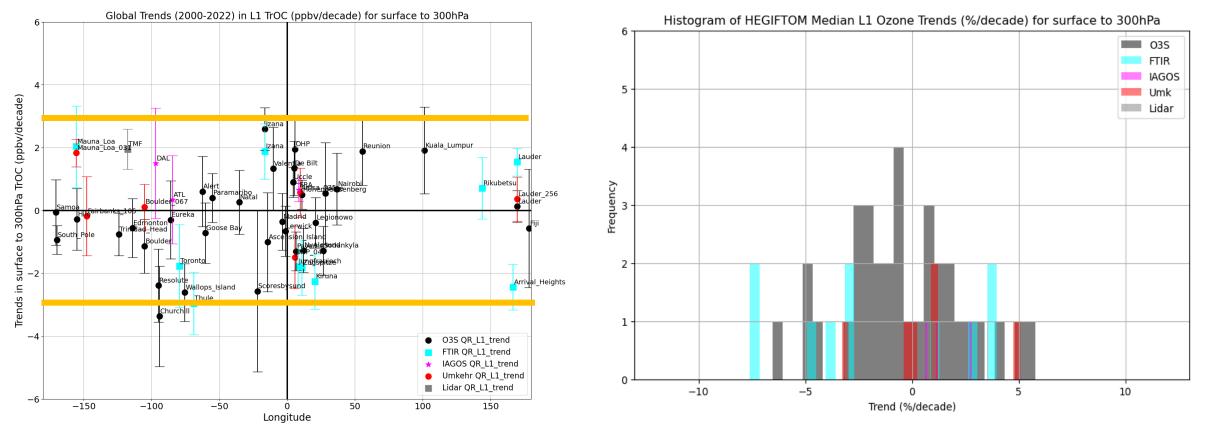
IAGOS

Brewer/Dobson Umkehr


TrOC=

HEGIFTOM Sites/Datasets for 2000-2022 Trends

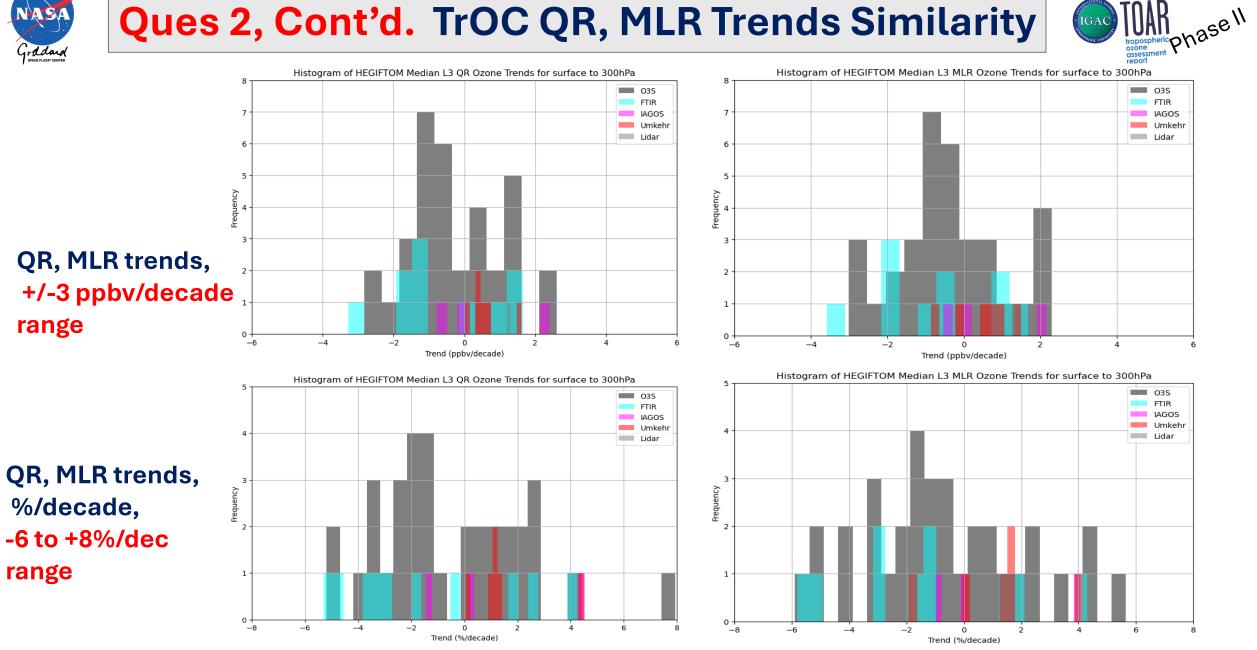
TOAR II Protocol: Minimum Sample No. to reduce trends uncertainty, start in 2000-2002, end 2020-2022 QR (Quantile Regression) analyses use <u>all data ("L1")</u> from 55 sites; **only 50%-ile results shown**. Monthly means (L3) from 55 sites are analyzed with QR and MLR (multiple linear regression)



- 1. What do TrOC trends (surface to 300 hPa) for 2000-2022 look like? *Examine "all-site" QR trends & median distribution at 55 sites*
- 2. How do TrOC trends computed with QR and MLR compare? Answer with analysis of L3 (monthly mean) TrOC from 55 stations
- 3. How do TrOC trends from the various instrument types (sondes, IAGOS, FTIR, Dobson Umkehr, Lidar) compare? *Examine trends at colocated stations*
- 4. How do TrOC trends vary by region? *Examine trends on map*

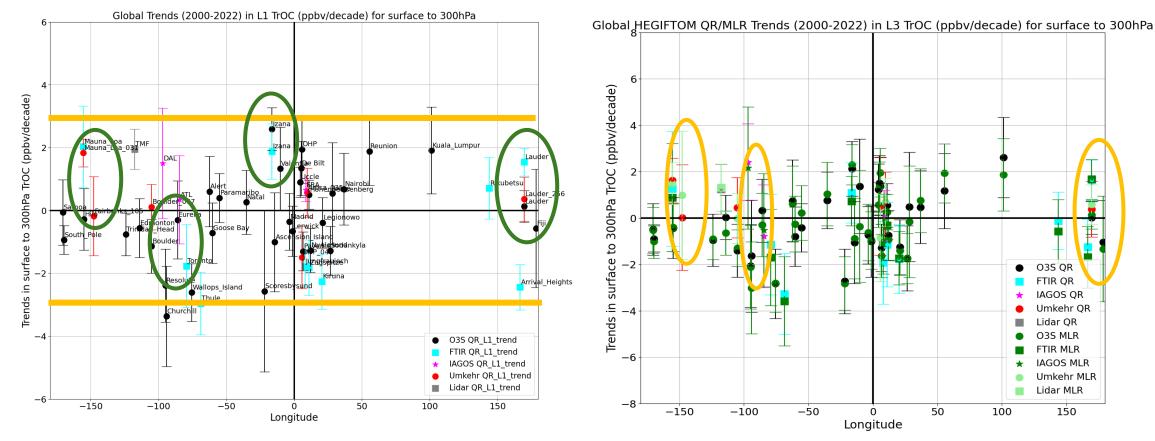
Ques 1. TrOC QR "All-Site" Trends, 5 Instrument Types

- Left: QR L1 trends for TrOC in TOAR-preferred ppbv/decade (2σ). (1) Median trends nearly all • within +/- 3 ppbv/decade. (2) Medians for most stations ~0. (3) Positive <u>and</u> negative trends appear at all longitudes
- **Right:** Medians in %/decade suggest possible instrument bias. More negatives than positives CEOS-Thompson, 18 Oct 2024


Ques 2. TrOC QR, MLR Trends Similar

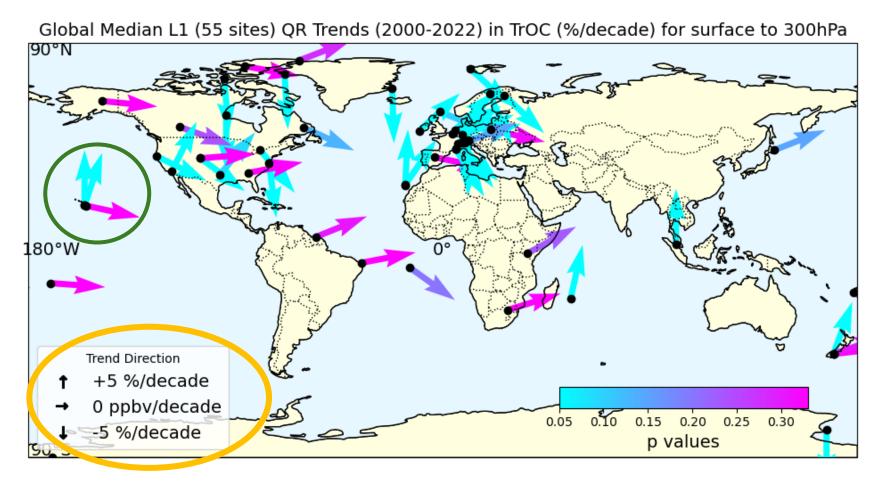
- Left & Center: TrOC trends, QR= color-coded for 5 instruments. MLR= green shades for 5 instrument types. QR trends tend to be higher than MLR (Right)
- Left: Preponderance of negative trends in No. Hemisphere. Center: few Asian data

CEOS-Thompson, 18 Oct 2024


IGAC

troposphe

Ques 3. TrOC Trends from 5 Instruments Compared



- Left: L1 QR trends, 4 of 6 sites with > 1 instrument show large offsets: MLO/Hilo, Boulder, Izaña, Lauder (Zeng et al., 2024; Björklund et al., 2024)
- **Right:** Pronounced offsets observed at same sites (MLO/Hilo, Boulder, Lauder) with both • statistical methods. Causes unclear – different sampling frequency, protocols, diurnal, seasonal effects investigated CEOS-Thompson, 18 Oct 2024

Ques 4. TrOC Trends – Global Map View

Summarizes: 55 station Trends, moderately positive to negative trends with more confidence (lower p-value) in no. hemisphere (NH). More negative trends in NH. Large divergences at multi-instrument stations. Lack of SH and Asian data in HEGIFTOM limits "global" assessment

SUMMARY

- TrOC trends (2000-2022) determined from 55 Ground-based Instruments display moderately positive and negative median trends; many with no detectable change!
- Results are independent of QR, MLR statistical method. D. Kollonige SHADOZ talk illustrates outstanding MLR application to equatorial SE Asia trends!

SIGNIFICANCE: HEGIFTOM data are *the* Definitive TOAR Reference. Use them!

- Recommend TOAR Model Comparison project with these values, site by site
- If model (or satellite TOC) disagree, HEGIFTOM can guide improvements

WORK IN PROGRESS:

- -Understand instrument trend offsets
- -Nearby site trend disagreements- why?
- -Investigate COVID-19 impact on trends
- -"Merge" stations for robust "regional trends" examine 5%-ile, 95%-ile trends

 Acknowledgments: Dozens of funding organizations. Hundreds of researchers who have operated and collected ozone ground-based data over the past 30 years! Ozonesonde Funding by NASA UACO (K. Jucks), SAGE III (R. Eckman) and NOAA/OAR - GML

Chang, K-L. et al. (2024) Challenges of detecting free tropospheric ozone ...https://doi.org/10.5194/egusphere-2023-2739

Gaudel, A., et al. (2018) Tropospheric Ozone Assessment Report: Present-day distribution and trends... <u>https://doi.org/10.1525/elementa.291</u>

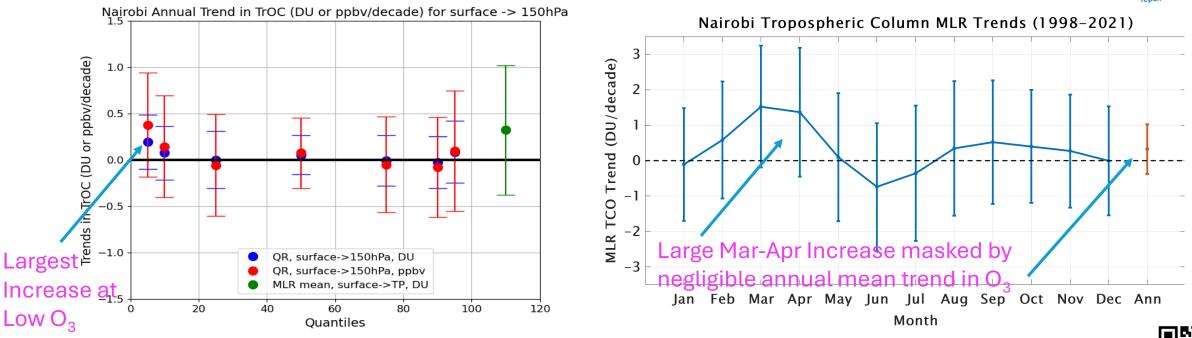
Gaudel, A., et al. (2024) Tropical tropospheric ozone distribution and trends from in situ..., ACP, *https://doi.org/10.5194/egusphere-2023-3095*

Kollonige, D. E., et al. (2024) SHADOZ ozonesonde network – Overview and updates, This Meeting, Talk Today

Stauffer, R. M., et al. (2019) The effects of a changing observing system on MERRA-2-based ozone ... <u>https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JD030090</u>

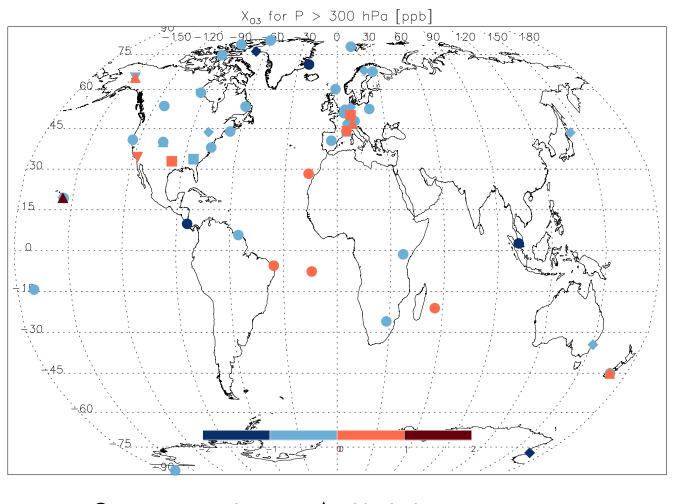
Stauffer, R, M., et al. (2024) Dynamical drivers of free-tropospheric ozone... ACP <u>https://doi.org/10.5194/egusphere-2023-2618</u>

Smit, H. G. J., A. M. Thompson et al. (2021) WMO/GAW ASOPOS Report 268 <u>https://library.wmo.int/records/item/57720-</u> ozonesonde-measurement-principles-and-best-operational-practices


Smit, H. G. J. et al. (2024) New insights from the Juelich OzoneSonde ... https://doi.org/10.5194/amt-17-73-2024

Thompson, A. M., et al. (2021) Regional and seasonal trends in tropical ozone from SHADOZ profiles... <u>https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2021JD034691</u>

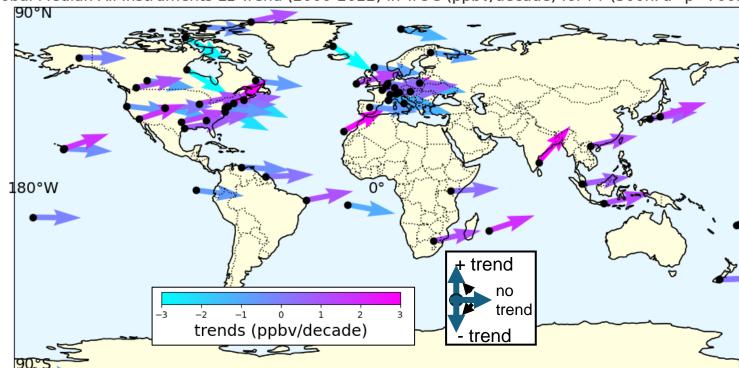
HEGIFTOM Trends. Input & Guidelines


 Recommended TOAR II statistical approach is Quantile Regression (QR) with NOAAprovided test code, e.g., K-L Chang et al., (2023; JGR; 10.1029/2022JD038090)

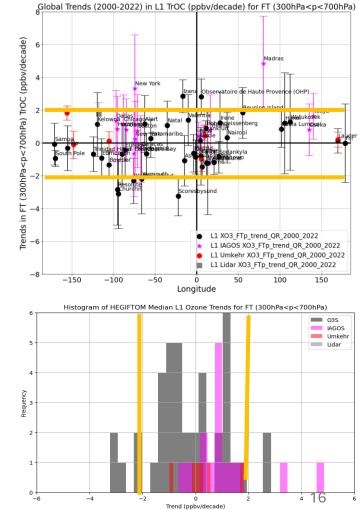
- Alternative: Multiple-Linear Regression (MLR) as used in Thompson et al., 2021 & Stauffer et al., ACP, 2024. MLR is standard of stratospheric ozone Assessment community
- Above example for a typical SHADOZ station shows merits of each approach. QR gives insights into low-mid-ozone-O₃ profiles. Monthly means from MLR give insight into meteorological or chemical signatures responsible for O₃ trends

Tropospheric ozone column: COVID impact

O ozonesondes \triangle Umkehr \Box IAGOS ∇ Lidar


- Relative change of mean TrOC for the time period 2000-2022 vs. 2000-2019 Blue: 2000-2022 < 2000-2019 Red: 2000-2022 > 2000-2019
- Decline in 75% of the sites, on average -0.3% prominent in NH (spring + summer), stronger in FT.
- From R. Van Malderen, RMI
- Impact on trends!

HEGIFTOM Paper 1 Figs, UPDATE-17oCT



- Left: Sites (sondes, IAGOS, Umkehr, lidar), 50-%ile median profiles, L1 analyzed with QR, 2000-2022. Upper Right: FT OC, 700-300 hPa, mostly smaller than TrOC trends; several exceptions in tropics.
- Changes mostly < 2.0 ppbv/dec, positive OR negative

Global Median All Instruments L1 Trend (2000-2022) in TrOC (ppbv/decade) for FT (300hPa<p<700hPa)

