Ozone, UV and Aerosol studies

IWV intercomparisons

During the COST action ES1206 "Advanced Global Navigation Satellite Systems tropospheric products for monitoring severe weather events and climate" (GNSS4SWEC), a literature overview of comparisons of Integrated Water Vapour (IWV) retrievals by GNSS with other techniques was undertaken. The most important findings that came out of this literature overview can be consulted in the Final Report of this COST action. It is also this section in the Final Report that should be used for referencing and acknowledgement when using this literature overview. The presentation of this literature overview, given at a workshop of this COST action can be found here.

Below, you find a table (with references at the bottom) of the IWV inter-technique studies involving GNSS, that (mostly) appeared in the peer-reviewed literature. For each study, chronologically ordered, you find the spatial extent, the time period covered, the different techniques or Numerical Weather Prediction (NWP) models, and possibly remarks. At the bottom (or in the tab "references"), the full reference of the study is provided. The table will be updated as much as possible, you can therefore contact us.



  • Alraddawi, D., Sarkissian, A., Keckhut, P., Bock, O., Noël, S., Bekki, S., Irbah, A., Meftah, M., and Claud, C.: Comparison of total water vapour content in the Arctic derived from GPS, AIRS, MODIS and SCIAMACHY, Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2017-195, in review, 2017.
  • Klein Baltink, H., H. van der Marel, and A. G. A. van der Hoeven, Integrated atmospheric water vapor estimates from a regional GPS network, J. Geophys. Res., 107(D3), doi:10.1029/2000JD000094, 2002.
  • Basili, P.; Bonafoni, S.; Ferrara, R.; Ciotti, P.; Fionda, E.; Arnbrosini, R., "Atmospheric water vapor retrieval by means of both a GPS network and a microwave radiometer during an experimental campaign in Cagliari, Italy, in 1999," Geoscience and Remote Sensing, IEEE Transactions on , vol.39, no.11, pp.2436-2443, Nov 2001, doi: 10.1109/36.964980
  • Bennouna, Y. S., Torres, B., Cachorro, V. E., Ortiz de Galisteo, J. P. and Toledano, C. (2013), The evaluation of the integrated water vapour annual cycle over the Iberian Peninsula from EOS-MODIS against different ground-based techniques. Q.J.R. Meteorol. Soc., 139: 1935–1956. doi:10.1002/qj.2080
  • Bock, O., C. Keil, E. Richard, C. Flamant, M.N. Bouin, Validation of precipitable water from ECMWF model analyses with GPS and radiosonde data during the MAP SOP, Q. J. R. Meteorol. Soc., 131, 3013–3036, 2005
  • Bock O., M.-N. Bouin, A. Walpersdorf, J.-P. Lafore, S. Janicot, F. Guichard, A. Agusti-Panareda, Comparison of ground-based GPS precipitable water vapor to independent observations and Numerical Weather Prediction model reanalyses over Africa, Quarterly Journal of the Royal Meteorological Society, vol. 133, page 2011-2027, doi:10.1002/qj.185, 2007
  • Bock, O., F. Guichard, S. Janicot, J. P. Lafore, M.-N. Bouin, and B. Sultan (2007b), Multiscale analysis of precipitable water vapor over Africa from GPS data and ECMWF analyses, Geophys. Res. Lett., 34, L09705, doi:10.1029/2006GL028039.
  • Bock, O., M.N. Bouin, E. Doerflinger, P. Collard, F. Masson, R. Meynadier, S. Nahmani, M. Koité, K. Gaptia Lawan Balawan, F. Didé, D. Ouedraogo, S. Pokperlaar, J.-B. Ngamini, J.P. Lafore , S. Janicot, F. Guichard, M. Nuret, (2008) The West African Monsoon observed with ground-based GPS receivers during AMMA, J. Geophys. Res., 113, D21105, doi:10.1029/2008JD010327.
  • Bock, O., and M. Nuret (2009) Verification of NWP model analyses and radiosonde humidity data with GPS precipitable water vapor estimates during AMMA. Weather Forecast., 24: 1085-1101 DOI:10.1175/2009WAF2222239.1
  • Bock, O., P. Willis, M. Lacarra, P. Bosser, An inter-comparison of zenith tropospheric delays derived from DORIS and GPS data (2010) Adv. Space Res., doi:10.1016/j.asr.2010.05.018, 46(12), 1648-1660, 2010
  • Bock, O., Bosser, P., Bourcy, T., David, L., Goutail, F., Hoareau, C., Keckhut, P., Legain, D., Pazmino, A., Pelon, J., Pipis, K., Poujol, G., Sarkissian, A., Thom, C., Tournois, G., and Tzanos, D.: Accuracy assessment of water vapour measurements from in situ and remote sensing techniques during the DEMEVAP 2011 campaign at OHP, Atmos. Meas. Tech., 6, 2777-2802, https://doi.org/10.5194/amt-6-2777-2013, 2013.
  • Bock, O., P. Willis, J. Wang, and C. Mears (2014), A high-quality, homogenized, global, long-term (1993–2008) DORIS precipitable water data set for climate monitoring and model verification, J. Geophys. Res. Atmos., 119, 7209–7230, doi:10.1002/2013JD021124
  • Bock, O., Bosser, P., Pacione, R., Nuret, M., Fourrié, N. and Parracho, A. (2016), A high-quality reprocessed ground-based GPS dataset for atmospheric process studies, radiosonde and model evaluation, and reanalysis of HyMeX Special Observing Period. Q.J.R. Meteorol. Soc., 142: 56–71. doi:10.1002/qj.2701
  • Bokoye, Amadou Idrissa, Alain Royer, Patrick Cliche, Norm O’Neill, 2007: Calibration of Sun Radiometer–Based Atmospheric Water Vapor Retrievals Using GPS Meteorology. J. Atmos. Oceanic Technol., 24, 964–979.
  • Buehler, S. A., Östman, S., Melsheimer, C., Holl, G., Eliasson, S., John, V. O., Blumenstock, T., Hase, F., Elgered, G., Raffalski, U., Nasuno, T., Satoh, M., Milz, M., and Mendrok, J.: A multi-instrument comparison of integrated water vapour measurements at a high latitude site, Atmos. Chem. Phys., 12, 10925-10943, doi:10.5194/acp-12-10925-2012, 2012.
  • Campanelli, M., Mascitelli, A., Sanò, P., Diémoz, H., Estellés, V., Federico, S., Iannarelli, A. M., Fratarcangeli, F., Mazzoni, A., Realini, E., Crespi, M., Bock, O., Martìnez-Lozano, J. A., and Dietrich, S.: Precipitable water vapor content from ESR/SKYNET Sun-sky radiometers: validation against GNSS/GPS and AERONET over three different sites in Europe, Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2017-221, in review, 2017.
  • L. Chang, G. Gao, S. Jin, X. He, R. Xiao and L. Guo, "Calibration and Evaluation of Precipitable Water Vapor From MODIS Infrared Observations at Night," in IEEE Transactions on Geoscience and Remote Sensing, vol. 53, no. 5, pp. 2612-2620, May 2015. doi: 10.1109/TGRS.2014.2363089
  • Chen, B., and Z. Liu (2016), Global water vapor variability and trend from the latest 36 year (1979 to 2014) data of ECMWF and NCEP reanalyses, radiosonde, GPS, and microwave satellite, J. Geophys. Res. Atmos., 121, 11,442–11,462, doi:10.1002/2016JD024917.
  • Ciotti, P.; Di Giamaolo, E.; Basili, P.; Bonafoni, S.; Mattioli, V.; Biondi, R.; Fionda, E.; Consalvi, F.; Memmo, A.; Cimini, D.; Pacione, R.; Vespe, F., "Validation of MERIS water vapour in the central Italy by concurrent measurements of microwave radiometers and GPS receivers," Geoscience and Remote Sensing Symposium, 2003. IGARSS '03. Proceedings. 2003 IEEE International , vol.5, no., pp.3123,3125 vol.5, 2003, doi: 10.1109/IGARSS.2003.1294703
  • Deblonde, G., Macpherson, S., Mireault, Y., and Heroux, P.: Evaluation of GPS precipitable water over Canada and the IGS network, J. Appl. Meteorol., 44, doi: 10.1175/JAM-2201.1, 153–166, 2005.
  • Gurbuz, G. and Jin, S. (2017), Long-time variations of precipitable water vapour estimated from GPS, MODIS and radiosonde observations in Turkey. Int. J. Climatol. doi:10.1002/joc.5153
  • Haase, J., M. Ge, H. Vedel, and E. Calais (2003), Accuracy and variability of GPS tropospheric delay measurements of water vapor in the Western Mediterranean, J. Appl. Meteorol., 42(11), 1547–1568.
  • Joshi, S., Kumar, K., Pande, B. et al. Meteorol. Atmos. Phys. (2013) 120: 177. https://doi.org/10.1007/s00703-013-0242-z
  • Kalakoski, N., Kujanpää, J., Sofieva, V., Tamminen, J., Grossi, M., and Valks, P.: Validation of GOME-2/Metop total column water vapour with ground-based and in situ measurements, Atmos. Meas. Tech., 9, 1533-1544, https://doi.org/10.5194/amt-9-1533-2016, 2016.
  • Köpken, C., 2001: Validation of Integrated Water Vapor from Numerical Models Using Ground-Based GPS, SSM/I, and Water Vapor Radiometer Measurements. J. Appl. Meteor., 40, 1105–1117, https://doi.org/10.1175/1520-0450(2001)040<1105:VOIWVF>2.0.CO;2
  • Koulali Idrissi, A., D. Ouazar, O. Bock and A. Fadil, Study of seasonal-scale atmospheric water cycle with ground-based GPS receivers, radiosondes and NWP models over Morocco (2012) Atmos. Res., 104–105, February 2012, Pages 273–291
  • Kumar, S. ,Singh, A.K., Prasad ,Anup K., Singh, R.P., 2013. Variability of GPS derived water vapor and comparison with MODIS data over the Indo-Gangetic plains. Phys. Chem. Earth 55–57, 11–18, https://doi.org/10.1016/j.pce.2010.03.040
  • Kwon H-T, Iwabuchi T., and Lim G-H (2007), Comparison of Precipitable Water Derived from Ground-Based GPS Measurements with Radiosonde Observations over the Korean Peninsula, Journal of the Meteorological Society of Japan. Ser. II,85, 6, pp 733-746
  • Li, Z., J.-P. Muller, and P. Cross (2003), Comparison of precipitable water vapor derived from radiosonde, GPS, and Moderate-Resolution Imaging Spectroradiometer measurements, J. Geophys. Res., 108, 4651, doi:10.1029/2003JD003372, D20.
  • Liou, Yuei-An, Yu-Tun Teng, Teresa Van Hove, James C. Liljegren, 2001: Comparison of Precipitable Water Observations in the Near Tropics by GPS, Microwave Radiometer, and Radiosondes. J. Appl. Meteor., 40, 5–15.
  • Liu Z, Li M, Zhong W, Wong MS (2013) An Approach to Evaluate the Absolute Accuracy of {WVR} Water Vapor Measurements Inferred from Multiple Water Vapor Techniques. Journal of Geodynamics -. doi: http://dx.doi.org/10.1016/j.jog.2013.09.002
  • Lu, N., J. Qin, K. Yang, Y. Gao, X. Xu, and T. Koike (2011), On the use of GPS measurements for Moderate Resolution Imaging Spectrometer precipitable water vapor evaluation over southern Tibet, J. Geophys. Res., 116, D23117, doi:10.1029/2011JD016160.
  • Masiello, G., C. Serio, Deleporte, T., H., Herbin, H., P. Di Girolamo, C. Champollion, A. Behrendt, P. Bosser, O. Bock, V. Wulfmeyer, M. Pommier, and C. Flamant (2013) Comparison of IASI water vapour products over complex terrain to COPS campaign data, Meteorologische Zeitschrift, 22, 471-487.
  • Morland, J., Deuber, B., Feist, D. G., Martin, L., Nyeki, S., Kämpfer, N., Mätzler, C., Jeannet, P., and Vuilleumier, L.: The STARTWAVE atmospheric water database, Atmos. Chem. Phys., 6, 2039-2056, doi:10.5194/acp-6-2039-2006, 2006.
  • Morland, J., M. A. Liniger, H. Kunz, I. Balin, S. Nyeki, C. Mätzler, and N. Kämpfer (2006), Comparison of GPS and ERA40 IWV in the Alpine region, including correction of GPS observations at Jungfraujoch (3584 m), J. Geophys. Res., 111, D04102, doi:10.1029/2005JD006043.
  • Morland, J., Collaud Coen, M., Hocke, K., Jeannet, P., and Mätzler, C.: Tropospheric water vapour above Switzerland over the last 12 years, Atmos. Chem. Phys., 9, 5975-5988, doi:10.5194/acp-9-5975-2009, 2009.
  • T.A. Musa, S. Amir, R. Othman, S. Ses, K. Omar, K. Abdullah, S. Lim, C. Rizos, GPS meteorology in a low-latitude region: Remote sensing of atmospheric water vapor over the Malaysian Peninsula, Journal of Atmospheric and Solar-Terrestrial Physics, Volume 73, Issue 16, October 2011, Pages 2410-2422, ISSN 1364-6826, http://dx.doi.org/10.1016/j.jastp.2011.08.014.
  • Namaoui, H., S. Kahlouche, A. H. Belbachir, R. Van Malderen, H. Brenot, and E. Pottiaux, 2017: GPS water vapor and its comparison with radiosonde and ERA-Interim data in Algeria. Adv. Atmos. Sci., 34(5), 623–634, doi:10.1007/s00376-016-6111-1
  • Niell, A. E., A. J. Coster, F. S. Solheim, V. B. Mendes, P. C. Toor, R. B. Langley, C. A. Upham, 2001: Comparison of Measurements of Atmospheric Wet Delay by Radiosonde, Water Vapor Radiometer, GPS, and VLBI. J. Atmos. Oceanic Technol., 18, 830–850.
  • Ning, T., Haas, R., Elgered, G., and Willén, U.: Multi-technique comparisons of 10 years of wet delay estimates on the west coast of Sweden, J. Geodesy, 86, 565-575, 2012
  • Ningombam S.S., Sridevi Jade, T.S. Shrungeshwara, H.-J. Song, Validation of water vapor retrieval from Moderate Resolution Imaging Spectro-radiometer (MODIS) in near infrared channels using GPS data over IAO-Hanle, in the trans-Himalayan region, In Journal of Atmospheric and Solar-Terrestrial Physics, Volume 137, 2016, Pages 76-85, ISSN 1364-6826, https://doi.org/10.1016/j.jastp.2015.11.019.
  • Nyeki, S., L. Vuilleumier, J. Morland, A. Bokoye, P. Viatte, C. Mätzler, and N. Kämpfer (2005), A 10-year integrated atmospheric water vapor record using precision filter radiometers at two high-alpine sites, Geophys. Res. Lett., 32, L23803, doi:10.1029/2005GL024079.
  • Ohtani, R., and I. Naito (2000), Comparisons of GPS-derived precipitable water vapors with radiosonde observations in Japan, J. Geophys. Res., 105(D22), 26917–26929, doi:10.1029/2000JD900362.
  • R. Pacione, E. Fionda, R. Ferrara, C. Sciarretta ,F. Vespe:"GPS and Ground-Based Microwave Radiometer PWV: A Case Study at Cagliari Astronomical Station, Italy." ION GPS 2001, Salt Lake City, USA Settembre 2001
  • Pałm, M., Melsheimer, C., Noël, S., Heise, S., Notholt, J., Burrows, J., and Schrems, O.: Integrated water vapor above Ny Ålesund, Spitsbergen: a multi-sensor intercomparison, Atmos. Chem. Phys., 10, 1215-1226, doi:10.5194/acp-10-1215-2010, 2010
  • Park C-G, Baek J., Cho, J., Analysis on characteristics of radiosonde bias using GPS precipitable water vapor, J. Astron. Space Sci. 27(3), 213-220 (2010), http://dx.doi.org/10.5140/JASS.2010.27.3.213
  • Pérez-Ramírez, D., D. N. Whiteman, A. Smirnov, H. Lyamani, B. N. Holben, R. Pinker, M. Andrade, and L. Alados-Arboledas (2014), Evaluation of AERONET precipitable water vapor versus microwave radiometry, GPS, and radiosondes at ARM sites, J. Geophys. Res. Atmos., 119, 9596–9613, doi:10.1002/2014JD021730.
  • Prasad, A. K., and R. P. Singh (2009), Validation of MODIS Terra, AIRS, NCEP/DOE AMIP-II Reanalysis-2, and AERONET Sun photometer derived integrated precipitable water vapor using ground-based GPS receivers over India, J. Geophys. Res., 114, D05107, doi:10.1029/2008JD011230.
  • S. Pugnaghi, M. Boccolari, S. Fazlagi?, R. Pacione, R. Santangelo, H. Vedel, F.Vespe:" Comparison of three alternative integrated water vopor measurements, derived from sun-photometer, GPS and meteorological model", Physics and Chemistry of the Earth, 27 (2002) 355-362.
  • R. Román, M. Antón, V.E. Cachorro, D. Loyola, J.P. Ortiz de Galisteo, A. de Frutos, P.M. Romero-Campos, Comparison of total water vapor column from GOME-2 on MetOp-A against ground-based GPS measurements at the Iberian Peninsula, In Science of The Total Environment, Volume 533, 2015, Pages 317-328, ISSN 0048-9697, https://doi.org/10.1016/j.scitotenv.2015.06.124.
  • Sapucci, Luiz F., Luiz A. T. Machado, João F. G. Monico, Artemio Plana-Fattori, 2007: Intercomparison of Integrated Water Vapor Estimates from Multisensors in the Amazonian Region. J. Atmos. Oceanic Technol., 24, 1880–1894.
  • Schneider, M., Romero, P. M., Hase, F., Blumenstock, T., Cuevas, E., and Ramos, R.: Continuous quality assessment of atmospheric water vapour measurement techniques: FTIR, Cimel, MFRSR, GPS, and Vaisala RS92, Atmos. Meas. Tech., 3, 323-338, doi:10.5194/amt-3-323-2010, 2010.
  • Seco, A., Ramírez, F., Serna, E., Prieto, E., García, R., Moreno, A., Cantera, J. C., Miqueleiz, L., Priego, J. E., Rain pattern analysis and forecast model based on GPS estimated atmospheric water vapor content, Atmospheric Environment, Volume 49, 2012, pp. 85-93, http://dx.doi.org/10.1016/j.atmosenv.2011.12.019.
  • Sierk, B., B. Bürki, H. Becker-Ross, S. Florek, R. Neubert, L. P. Kruse, and H.-G. Kahle (1997), Tropospheric water vapor derived from solar spectrometer, radiometer, and GPS measurements, J. Geophys. Res., 102(B10), 22411–22424, doi:10.1029/97JB01777.
  • Sohn, D.-H., Park, K.-D., Won, J., Cho, J., & Roh, K.-M. 2012, Comparison of the characteristics of precipitable water vapor measured by Global Positioning System and microwave radiometer, J. Astron. Space Sci., 29, 1-10 (2012), http://dx.doi.org/10.5140/JASS.2012.29.1.001
  • Thomas, I. D., M. A. King, P. J. Clarke, and N. T. Penna (2011), Precipitable water vapor estimates from homogeneously reprocessed GPS data: An intertechnique comparison in Antarctica, J. Geophys. Res., 116, D04107, doi:10.1029/2010JD013889.
  • Torres, B., V. E. Cachorro, C. Toledano, J. P. Ortiz de Galisteo, A. Berjón, A. M. de Frutos, Y. Bennouna, and N. Laulainen (2010), Precipitable water vapor characterization in the Gulf of Cadiz region (southwestern Spain) based on Sun photometer, GPS, and radiosonde data, J. Geophys. Res., 115, D18103, doi:10.1029/2009JD012724.
  • Van Baelen, Joël, Jean-Pierre Aubagnac, Alain Dabas, 2005: Comparison of Near–Real Time Estimates of Integrated Water Vapor Derived with GPS, Radiosondes, and Microwave Radiometer. J. Atmos. Oceanic Technol., 22, 201–210, doi: http://dx.doi.org/10.1175/JTECH-1697.1
  • Van Malderen, R., Brenot, H., Pottiaux, E., Beirle, S., Hermans, C., De Mazière, M., Wagner, T., De Backer, H., and Bruyninx, C.: A multi-site intercomparison of integrated water vapour observations for climate change analysis, Atmos. Meas. Tech., 7, 2487-2512, doi:10.5194/amt-7-2487-2014, 2014
  • Javier Vaquero-Martínez, Manuel Antón, José Pablo Ortiz de Galisteo, Victoria E. Cachorro, Pablo Álvarez-Zapatero, Roberto Román, Diego Loyola, Maria João Costa, Huiquin Wang, Gonzalo González Abad, Stefan Noël, Inter-comparison of integrated water vapor from satellite instruments using reference GPS data at the Iberian Peninsula, In Remote Sensing of Environment, 2017, ISSN 0034-4257, https://doi.org/10.1016/j.rse.2017.09.028
  • Javier Vaquero-Martínez, Manuel Antón, José Pablo Ortiz de Galisteo, Victoria E. Cachorro, Maria João Costa, Roberto Román, Yasmine S. Bennouna, Validation of MODIS integrated water vapor product against reference GPS data at the Iberian Peninsula, In International Journal of Applied Earth Observation and Geoinformation, Volume 63, 2017, Pages 214-221, ISSN 0303-2434, https://doi.org/10.1016/j.jag.2017.07.008.
  • Javier Vaquero-Martínez, Manuel Antón, José Pablo Ortiz de Galisteo, Victoria E. Cachorro, Huiqun Wang, Gonzalo González Abad, Roberto Román, Maria João Costa, Validation of integrated water vapor from OMI satellite instrument against reference GPS data at the Iberian Peninsula, In Science of The Total Environment, Volume 580, 2017, Pages 857-864, ISSN 0048-9697, https://doi.org/10.1016/j.scitotenv.2016.12.032.
  • Vázquez B, G.E. & Grejner-Brzezinska, D.A. GPS Solut. (2013) 17: 29. https://doi.org/10.1007/s10291-012-0258-8
  • Vey, S., et al. (2004), Comparison of tropospheric water vapor over Antarctica derived from AMSU‐B data, ground‐based GPS data and the NCEP/NCAR reanalysis, J. Meteorol. Soc. Jpn., 82, 259–267.
  • Vey, S., Dietrich, R., Fritsche, M., Rülke, A., Steigenberger, P., and Rothacher, M.: On the homogeneity and interpretation of precipitable water time series derived from global GPS observations, J. Geophys. Res., 114, D10101, doi:10.1029/2008JD010415, 2009.
  • Wang, H., Gonzalez Abad, G., Liu, X., and Chance, K.: Validation and update of OMI Total Column Water Vapor product, Atmos. Chem. Phys., 16, 11379-11393, https://doi.org/10.5194/acp-16-11379-2016, 2016.
  • Wang, J., L. Zhang, A. Dai, T. Van Hove, and J. Van Baelen (2007), A near-global, 2-hourly data set of atmospheric precipitable water from ground-based GPS measurements, J. Geophys. Res., 112, D11107, doi:10.1029/2006JD007529.
  • Wong, M. S., Jin, X., Liu, Z., Nichol, J. and Chan, P. W. (2015), Multi-sensors study of precipitable water vapour over mainland China. Int. J. Climatol., 35: 3146–3159. doi:10.1002/joc.4199


Cookies saved